Ïã½¶ÊÓÆµ

Wind and Solar Energy Technician (Optional Co-op)

CampusStart DateTuition/Fees
Saint JohnSeptember 2025 (Blended Delivery) Domestic | International

Program Overview

The Wind and Solar Energy Technician program provides learners with the practical skills and knowledge needed to work in the wind and solar energy fields. This two-year program builds on the foundation laid by the Electrical and Electronics Engineering Technician certificate program, focusing on the operation, maintenance, testing, and troubleshooting of wind and solar energy systems.
 
In the first year, learners will develop a foundation in electrical and electronics, covering essential areas like math, physical science, and electrical circuits, along with critical thinking, problem-solving, and teamwork. They will also gain hands-on experience in installing, operating, maintaining, and troubleshooting electrical and electronic systems.
 
In the second year, the program shifts to wind and solar energy, where learners will learn to safely operate, maintain, test, and troubleshoot these systems in real-world and simulated environments. The program includes opportunities for co-op placements, allowing learners to gain valuable industry experience.

Advanced Placement 
Students with a Certificate in Electrical and Electronics Engineering Technician or equivalent qualify for advanced placement and direct entry in year two of the program.
 


Duration

The requirements for this diploma program may be achieved within two years of full-time study.


Admission Requirements

    Profile C

  • High School Diploma or Adult High School Diploma or GED Diploma of High School Equivalency or Canadian Adult Education Credential (CAEC) or Essential Skills Achievement Pathway: Post-Secondary Entry High School Diploma
    • Foundations of Mathematics 110
      • Total of two (2) sciences, including at least one (1) from the following:
        • Biology 112 or 122
        • Chemistry 112 or 122
        • Physics 112 or 122 (recommended)

      NB Francophone High School Math Equivalencies
      International Student Admission Equivalencies


      Career Possibilities

      The Wind and Solar Technician program prepares students to work with renewable energy systems by providing a strong foundation in wind and solar technologies. Designed to develop the technical skills needed for the field, the program covers installation, maintenance, troubleshooting, and safety practices related to wind turbines and solar photovoltaic systems.
       
      This program combines theoretical knowledge with hands-on learning through lab exercises, simulations, and equipment-based training. Students will work with electrical circuits, power systems, and control technologies, gaining experience with the tools and techniques used in the industry. Coursework also emphasizes critical thinking and problem-solving, preparing students to analyze system performance and address technical challenges in the field.
       
      Graduates will be ready to enter the renewable energy workforce with the practical skills needed to operate and maintain wind and solar energy systems safely and effectively.



      Specific Considerations

      Technology Requirements
      Ïã½¶ÊÓÆµ is a connected learning environment. All programs require a minimum specification, including access to the internet and a laptop. Your computer should meet your program technology requirements to ensure the software required for your program operates effectively. Free wifi is provided on all campuses.


      Areas of Study

      • Safety Systems and Equipment
      • Wind Energy Systems
      • Hydraulic Equipment and Systems
      • Mechanical Equipment and Systems
      • Solar Energy Systems
      • Computer-Aided Drafting and Design
      • Technical Drawings
      • Electrical and Electronic Equipment and Systems
      • Test and Measurement
      • Math and Physics
      • Ethics, Sustainability, Contracts, and Codes
      • Computer Tools and Applications
      • Computer Programming
      • Teamwork
      • General Health and Safety
      • Communication


      Program Courses

      Courses are subject to change.

      This course applies the fundamental laws of electric circuits to the analysis of DC circuits and networks. Capacitors and inductors are introduced as circuit components, and the transient response of RL and RC circuits is determined using mathematical techniques. Network theorems such as Thevenin’s and superposition are used to analyze DC circuits. Industry accepted techniques for drawing circuit schematics are introduced and used throughout the course. In the lab students build and troubleshoot series and parallel DC circuits.
      Learning is achieved through in-class activities and hands-on experience in a lab setting. Activities are completed both independently and in small teams with their peers.

      Prerequisites:

      • MATH1272B
      • PHYS1137B

      This course is designed to provide students with the knowledge and skills to analyze single-phase alternating current (AC) circuits. Students apply the fundamental principles of electric circuits and the mathematics of complex numbers to investigate the frequency response of AC circuits involving reactive components. Topics include resonance, filters, and power in AC circuits.
      Learning is achieved through in-class activities and hands-on experience in a lab setting. Activities are completed both independently and in small teams with their peers.

      Prerequisites:

      • MATH1273A
      • BEEB1192B

      This course introduces students to electrical power systems by providing experience using related instruments and equipment. Students are introduced to transformers and the fundamental principles of three-phase power distribution. They examine the behaviour of simple electrical systems with reactive loads. In the lab students build, test, and troubleshoot AC power circuits.
      Learning is achieved through in class activities and hands-on experience working with live electrical system equipment in a lab setting.

      Prerequisites:

      • BEEB1193B

      This course is designed to help students strengthen their fundamental skills in writing clear, effective sentences and paragraphs, and enable them to create organized, unified and coherent documents. The writing process is introduced. Students will recognize the importance of writing for the intended purpose and audience.

      This course introduces students to the fundamentals of technical writing and research. Students will learn how to write a variety of technical documents and business correspondence suitable to a specific audience and purpose as well as learn how to conduct research and document sources.

      Prerequisites:

      • COMM1264A

      This course is designed for students to learn how to quickly make sketches and notes. Emphasis is on recognizing the important details and getting them clearly sketched and/or written down. Accuracy, neatness, and legibility are stressed throughout.  

      Learning is achieved through hands-on class activities and assignments. 

      This course introduces students to how electrical components, wires, and circuit boards are connected through soldering and prototyping. Emphasis is on applying industry accepted practices. Safe and correct use of tools and supplies are demonstrated and practiced throughout. Students have hands-on training in both through-hole and surface mount soldering techniques, and learn to make reliable circuit connections with a prototyping board. As part of the course students assemble a circuit board for an electronic device. 

      Learning is achieved through practical, hands-on learning in a lab environment.

      This course introduces students to the tools and techniques used to build completed electronic equipment such as control panels, instruments, and power supplies. Topics include drawing interpretation, enclosures, assembly, wiring, testing, and labeling. As part of the course students complete a project involving the assembly, testing, and maintenance of electronic equipment such as a low voltage power supply. Throughout the course students gain experience with a variety of tools, fasteners, coatings, and glues. Learning is achieved through practical, hands-on learning in a lab environment.

      Prerequisites:

      • ELTE1077B
      • BEEB1192B

      This course is designed to apply the fundamental principles of digital electronics to the analysis and troubleshooting of logic circuits. Students explore the relationship between analog and digital signals and examine analog to digital and digital to analog conversion methods.  The binary and hexadecimal number systems are used to represent numeric quantities in logic circuits. Industry-accepted techniques for digital circuit schematics are introduced and used throughout the course. In the lab, students build, program, and examine logic circuits using both logic gate integrated circuits (IC) and programmable logic devices (PLD).
      Learning is achieved through in-class activities and hands-on experience in a lab setting.

      Prerequisites:

      • MATH1271B

      This course is designed to apply the fundamental principles of semiconductor devices to the analysis and troubleshooting of basic electronic circuits. Students learn the operating principles of diodes and bi-polar junction transistors (BJTs), and apply them to simple regulation and amplification circuits. Students are also introduced to light-emitting diodes (LEDs), field-effect transistors (FETs) and thyristors. In the lab students build, examine, and troubleshoot various electronic circuits using diodes, BJTs, and FETs.

      Learning is achieved through in-class activities and hands-on experience in a lab setting.

      Prerequisites:

      • MATH1273A
      • BEEB1192B

      This course introduces students to ethical principles and codes of conduct applicable to Professional Engineering Technology practice. It prepares students for being engineering technology professionals by exploring critical thinking, ethical behavior, and the legal and professional accountabilities that apply in the workplace. The industry's code(s) of ethics and practical case studies are used as the learning focus.

      Learning is achieved through lectures, case studies, and team projects.

      The overall program goal of the co-op experience is to complement academic studies with related work experience.  Co-op students can gain enriched understandings of their academic program through practical application. Moreover, the co-op experience can motivate students to further education as well as lead to relevant employment after graduation.  Through their work experiences, students will develop and refine employability skills, gain an understanding of career opportunities in their field, and realities of the workplace.  Students are required to follow guidelines as stipulated in the “Ïã½¶ÊÓÆµ Co-op Education” process.

      This course forms the foundations of technical mathematics. Topics covered include fundamental numerical calculations, manipulation of algebraic expressions, and solving equations, system of equations, and word problems. Learning is achieved through lectures, classroom examples and working out problems.

      This course is designed for students to learn more advanced algebra, trigonometry, and geometry. Topics include quadratic equations, trigonometry, logarithms, and vectors.

      Learning will be achieved through lectures and classroom examples and work. Learning is achieved through lectures and in-class activities.

      Prerequisites:

      • MATH1271B

      This course introduces students to advanced technical math required to solve applied problems in Engineering Technology. Topics include complex numbers, matrices, plane analytic geometry, graphs of trigonometric functions and trigonometric equations. Limits, as required for calculus, is also introduced. 
       
      Students will be able to apply the advanced technical math to solve technical problems and evaluate limits. Learning is achieved through lectures and in-class activities.

      Prerequisites:

      • MATH1272B

      This course provides an introduction to the meaning of community service.  Students learn how community service can enhance a student’s educational experience, personal growth, employability, and civic responsibility. Students participate in one day of volunteering to enhance their understanding of civic responsibility and to help the New Brunswick Community College realize its vision of transforming lives and communities.

      This workshop introduces students to the process of finding employment. It explores the various strategies and resources available, and examines the role of social media.

      This course introduces students to the principles of energy and matter. Emphasis is on basic concepts of how energy interacts with matter. Students also learn practical techniques for solving problems relating to energy and matter. 

      Learning will be achieved through lectures, class activities and assignments. 

      Prerequisites:

      • MATH1271B

      This course introduces students to the fundamental principles of electricity and magnetism and their application in analyzing DC electric circuits. Students use Ohm’s law and other related methods to calculate basic circuit parameters. Conventional current flow notation is used throughout the course.
      Learning is achieved through lectures and in-class activities, and applied in a lab setting through hands-on activities.

      Prerequisites:

      • MATH1271B

      This course introduces students to the fundamentals of programming with microcontrollers using the “C” programming language. Fundamental programming techniques learned during the course include variables, mathematical calculations, and basic program control. Students set up and use an integrated development environment (IDE) to write, upload, and debug programs for a microcontroller. They learn how to use library functions to access a selection of the microcontroller’s basic hardware features.
      Learning is achieved through in-class activities and hands-on experience programming microcontrollers to perform simple measurement and control tasks in an electronic device.

      This course introduces students to basic computer applications and tools that are integral to all engineering disciplines, including word processing, presentation, spreadsheet, and electronic file management and data sharing.

      Students learn how to select and use appropriate computer applications to perform tasks such as research, data analysis, data presentation and sharing, and preparation of technical documents and reports within their discipline. An emphasis is placed on the data security, and safe use and management of files in a collaborative networked environment. Learning is achieved through practical application of skills during hands-on class activities and assignments.

      This course introduces students to the CAD (Computer-Aided Design) tools that are integral to all engineering disciplines for making and annotating basic engineering drawings. Students will learn the application interface, options, and commands for producing basic engineering drawings. Learning is achieved through practical, hands-on activities while using the CAD software.

      This course is designed for students to learn how to use CAD software to maintain and produce drawings of electrical systems. CAD software features such as symbol libraries and wiring tables are used to draw schematics and wiring diagrams. Throughout the course emphasis is placed on adherence to industry standards. Learning is achieved through practical, hands-on activities using CAD software.

      Prerequisites:

      • SAAL1836A

      In New Brunswick, everyone in the workplace, including employers and employees, is responsible for their own health and safety and for the health and safety of those around them. This course introduces students to the importance of working safely and addresses how employers, supervisors, and employees can control the hazards and risks associated with the workplace. Students also learn about the roles and responsibilities of key stakeholders including WorkSafeNB, the employer, the supervisor, and the employee in ensuring workplaces are safe.

      This course provides students with an understanding of statistical principles and methods.  Students will learn how to collect, organize and report statistical data using elementary statistical techniques such as construction of frequency distributions, histograms and scatterplots. They will also learn how to use descriptive statistics such as central tendency (mean, mode, median, midrange), variation (range, variable, standard deviation), and position (percentile rank, quartile rank) to analyze the data and solve problems.

      Prerequisites:

      • MATH1272B


      Disclaimer: This web copy provides guidance to prospective students, applicants, current students, faculty and staff. Although advice is readily available on request, the responsibility for program selection ultimately rests with the student. Programs, admission requirements and other related information is subject to change.